

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

THE CASE FOR TEAMING ON THE ALS-STME PROGRAM

PREPARED BY S.F.MOREA 6/20/90

ADVANCED LAUNCH SYSTEM

NASA

HATIONAL AERONAUTICS
AND

SPACE ADDINISTRATION

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

AGENDA

- O BACKGROUND
- O VIABILITY OF INDUSTRY COMPETITIVENESS
- O POLICY
- O ACQUISITION STRATEGY
 - o PROCUREMENT OBJECTIVES
 - O TEAMING BENEFITS
- O CONCLUSION/SUMMARY

STME PROTOTYPE PROGRAM George C. Marshall Space Flight Center

BACKGROUND

ADVANCED LAUNCH SYSTEM

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

ALS & STME SITUATION

- DOD BUDGET UNCERTAINTIES AND CUTS
 - PRECLUDES FY 92 ALS VEHICLE AND ENGINE FSD START
 - · MAJOR CUTS TO VEHICLE STUDIES & NON PROP. ADP'S
- DOD & NASA HAVE AGREED TO PROCEED WITH A PROTOTYPE ENGINE PROGRAM IN FY-92
 - CONSISTENT WITH NASA ADV COMMITTEE RECOMMENDATIONS
 - CONSISTENT WITH DSB RECOMMENDATIONS
 - ENDORSED BY ALS SYSTEM CONTRACTORS
 - NASA CONSIDERING SIGNIFICANT BUDGET SUPPORT

STME

PROTOTYPE PROGRAM

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

2 (1)

ADVANCED LAUNCH SYSTEM

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

VIABILITY OF THE ROCKET ENGINE INDUSTRY COMPETITIVENESS

ADVANCED LAUNCH SYSTEM

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

CONCERN

- •USA COMPETITIVENESS IN LARGE LIQUID ROCKET ENGINES IN SERIOUS JEOPARDY
 - THIS NATION NO LONGER LEADS THE WORLD IN ROCKET ENGINE DEVELOPMENT
 - .. NEW LOX/LH2 ENGINES ARE UNDER DEVELOPMENT IN :
 - EUROPE (1st FLIGHT EXPECTED IN 1995)
 - JAPAN (1st FLIGHT EXPECTED IN 1995)
 - USSR (UNDER DEVELOPMENT SINCE MID 1980'S)
 - NO NEW LARGE ROCKET ENGINE DEV INITIATED IN USA SINCE 1970

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

LARGE LIQUID ROCKET ENGINE DEVELOPMENT PROGRAMS IN THE USA

f					
ENGINE	THRUST	PROPELLANT	CONTRACTOR	APPLICATION	STATUS
S-3 (S-3D/E/F)	150K	LOX/KEROSENE	ROCKETDYNE	JUPITER THOR	DEV & PROD. COMP.1960
H-1	188K	LOX/RP-1	ROCKETDYNE	SATURN 1/1B	DEV & PROD. COMP.1961
F-1	1,500K	LOX/RP-1	ROCKETDYNE	SATURN V	DEV & PROD. COMP.1967
RL-10 RL-10-A3 RL-10-A3/3 RL-10-A4	15K 16.5K 3A 16.5K 20.8K	LOK/LH2	PRATT & WHITNEY	CENTAUR S-IV ATLAS/TITAN ATLAS C	D & P COMP 1963 D & P COMP 1964 D & P COMP 1965 QUAL. COMP 1990
J-2	205K	LOX/LH2	ROCKETDYNE	S-II/S-IVB	D&PCOMP 1966

* NOTE: THIS A STRICTLY COMMERCIAL ENGINE DEVELOPED FOR GENERAL DYNAMICS COMMERCIAL ATLAS/CENTAUR PROGRAM.

ADVANCED LAUNCH SYSTEM

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

LARGE LIQUID ROCKET ENGINE DEVELOPMENT PROGRAMS IN THE USA

ENGINE	THRUST	PROPELLANT	CONTRACTOR	APPLICATION	<u>STATUS</u>
M-1	1,500K	LOX/LH2	AEROJET	NOVA	DEV CANCELED 1967
LR-87	548K	STORABLES	AEROJET	TITAN (1ST STG)	PRODUCTION
LR-91	105K	STORABLES	AEROJET	TITAN (2ND STG)	PRODUCTION
SSME	470K	LOX/LH2	ROCKETDYNE	SHUTTLE	IN PRODUCT MPROVEMENT PHASE

CONCLUSION: COMPETITIVENESS OF THE THREE (3) LARGE LIQUID ENGINE CONTRACTORS IN THE USA SERIOUSLY ERODED SINCE THE 1960'S.

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

CONCERN

- COMPETITION WITHIN USA ON LARGE LIQUID ROCKET ENGINES IN SERIOUS JEOPARDY
 - OF THE THREE RECOGNIZED ENGINE PRIME CONTRACTORS...
 - ONLY TWO HAVE RECENT LOX/LH2 ENGINE DEV EXPERIENCE
 - ONLY ONE HAS LARGE LOX/LH2 SYSTEM LEVEL EXPERIENCE
 - OPPORTUNITIES FOR NEW ENGINE DEVELOPMENTS IN THE NEAR FUTURE ARE VERY LIMITED.

ADVANCED LAUNCH SYSTEM

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

STME PROTOTYPE PROGRAM

PROGRAM George C. Marshall Space Flight Center

CONCERN

- OPEN COMPETITION CAN BE DETRIMENTAL TO THE BEST INTERESTS OF THE GOVERNMENT UNDER CERTAIN CIRCUMSTANCES
 - WHERE BUDGETS DO NOT ALLOW FOR THE DEVELOPMENT OF MULTIPLE SOURCES AND ALTERNATE COMPETING DESIGNS , AND........
 - WHERE VERY SMALL MARKETS EXISTS, AND.....
 - WHERE LIMITED QUALIFIED COMPETITORS EXIST......
 - A SOLE SOURCE WILL RESULT !!!

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

POLICY

ADVANCED LAUNCH SYSTEM

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

POLICY

- SUPPORT AND PROVIDE FOR THE LARGE LIQUID ROCKET ENGINE NEEDS OF THIS NATION
 - MAINTAIN A VIGOROUS ROCKET ENGINE INDUSTRY IN THE USA FOR LARGE SIZE, LATEST TECHNOLOGY LIQUID ROCKET ENGINES.
 - KEEP USA FROM RELINQUISHING ITS PREEMINENCE IN LARGE LIQUID ROCKET ENGINES.
 - ALLOW USA TO BETTER COMPETE IN THE INTERNATIONAL COMMERCIAL ARENA.
 - AVOID POTENTIAL DEPENDENCY ON OTHER NATIONS FOR OUR NEXT GENERATION OF LARGE LIQUID ROCKET ENGINES.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

POLICY SPECIFIC

- CONDUCT AN STME PROTOTYPE ENGINE PROGRAM THAT:
 - PROVIDES FOR THE LARGE LIQUID ROCKET ENGINE NEEDS OF THE NATION
 - MINIMIZES FULL SCALE DEVELOPMENT COST AND SCHEDULE OF NEXT GENERATION LARGE LIQUID ROCKET ENGINE
 - SIMILAR DOD/AF PROTOTYPE APPROACHES HIGHLY SUCCESSFUL (ie. F-16)
 - FACILITATES SYNERGISM BETWEEN THE PARTICIPATING CONTRACTORS TO OBTAIN THE BEST AND UNIQUE IDEAS, CAPABILITIES, AND TECHNOLOGIES LEADING TO THE BEST OVERALL DESIGN.
 - PRECLUDES A SINGLE CONTRACTOR FROM BECOMING A FUTURE "SOLE SOURCE".
 - AVOID A "WINNER TAKE ALL" PROCUREMENT APPROACH.

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

ACQUISITION STRATEGY

ADVANCED LAUNCH SYSTEM

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

PROCUREMENT OBJECTIVE

- IMPLEMENT TEAMING NOW ON THE EXISTING ARRAY OF PHASE B, AND ADP CONTRACTS.
 - TEAM AEROJET, PRATT & WHITNEY, AND ROCKETDYNE
 - USE TEAM TO FACILITATE ENGINE CYCLE DECISION
 - USE TEAM TO HELP RESTRUCTURE TOTAL PROGRAM TO ARRIVE AT AN INTEGRATED PLAN CONVERGING TO A PROTOTYPE ENGINE DESIGN.
- CONDUCT THE PROTOTYPE PROGRAM WITH TEAM OF THE 3 STME PRIME CONTRACTORS.
 - AWARD CONTRACT IN FY-92 TO TEAM OF AEROJET, PRATT & WHITNEY, AND ROCKETDYNE
 - PROTOTYPE PROVIDES PROOF OF CONCEPT

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

BENEFITS OF TEAMING

- MAINTAINS A VIGOROUS INDUSTRY FOR LARGE LIQUID ROCKET ENGINES IN THE USA.
 - RETAINS USA'S PREEMINENCE AND LEADERSHIP IN THE FIELD
 - MAKES USA MORE COMPETITIVE IN THE INTERNATIONAL ARENA
 - AVOIDS SINGLE CONTRACTOR FROM BECOMING A SOLE SOURCE FOR LARGE LIQUID ROCKET ENGINES
- ENHANCES COMPETITION FOR THE FUTURE

ADVANCED LAUNCH SYSTEM

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

BENEFITS OF TEAMING (cont'd)

- WITHIN THE BUDGET CONSTRAINTS, TEAMING HAS THE POTENTIAL FOR THE <u>BEST PRODUCT</u> AT <u>REDUCED DEVELOPMENT COSTS</u>
 - SYNERGISM OF THE PRIME COMPANIES AND GOV'T WORK
 - AVOIDS CONTRACTORS WITHHOLDING BEST IDEAS AND TECHNOLOGIES BECAUSE OF THE COMPETITIVE ENVIRONMENT
 - ALLOWS BEST COMPONENT DESIGNS TO EMERGE WITHIN BEST ENGINE SYSTEM DESIGN
 - CONSISTENT WITH ALS TOTAL QUALITY MANAGEMENT REQ'T
 - ALLOWS EARLY CONVERGENCE TO A SINGLE ENGINE DESIGN
 - ELIMINATES DUPLICATION OF EFFORTS AT THE 3 CONTRACTORS

STME PROTOTYPE PROGRAM

George C. Marshall Space Flight Center

CONCLUSION/SUMMARY

ADVANCED LAUNCH SYSTEM

STME PROTOTYPE PROGRAM

George C. Marshail Space Flight Center

CONCLUSION/SUMMARY

- THE NATION NEEDS TO PROCEED WITH A NEW LOX/LH2 ROCKET ENGINE PROGRAM NOW I
- OPEN COMPETITION NOW WILL HAVE DELETERIOUS IMPACTS ON THE COMPETITIVE VIABILITY OF THE LIQUID ROCKET ENGINE INDUSTRY
- TEAMING PROVIDES A WAY TO SOLVE TODAYS CONCERNS WHILE ENHANCING THE OPTION FOR OPEN COMPETITION IN THE FUTURE